彩票365下载_彩票365官网app|官网手机购彩

彩票365官网app互联网

当前位置:彩票365下载 > 彩票365官网app互联网 > 彩票365下载增长模型下的产品与运营实战,基于

彩票365下载增长模型下的产品与运营实战,基于

来源:http://www.aysygc.com 作者:彩票365下载 时间:2019-08-15 17:27

原标题:想成为数据产品经理,先掌握这些数据分析方法论

电商行业是当前市场十分火热的行业,也是对数据分析师需求很大的行业,这篇文章可以帮助没有电商行业经验的同学快速了解电商数据分析的指标和框架。那么话不多说,咱们开始吧~

本文根据GrowingIO创始人&CEO张溪梦与产品经理在线交流问题整理编辑,希望对产品经理提升数据分析能力有较好的帮助。

在产品和运营体系中,数据是茫茫方向中的一盏指明灯。通过数据反馈,我们可以从重重问题中快速、准确地找到引发问题的异常因素,规避异常情况的发生。

何谓数据产品

一个优秀的数据产品经理必须要具备各种技能, 要了解自己的用户,明晰用户的核心需求,而最重要的是一定要掌握数据分析技能、会用数据分析工具。让我们通过文章来看看:有哪些实用的数据分析方法吧。

首先要构建电商数据分析的基本指标体系,主要分为8个类指标,即:

▶如何获取数据,获取什么样的数据?

彩票365下载 1

不知道这是不是印证了若不是找工作也不会跟数据产品结梁子呢,呵呵!言归正传,数据产品这个词目前看起来还是来自职位描述,至于什么叫数据产品,大约业界还没有定论。姑且引用老读悟的定义“数据产品是可以发挥数据价值去辅助用户更优的做决策(甚至行动)的一种产品形式。它在用户的决策和行动过程中,可以充当信息的分析展示者和价值的使能者。从这个角度讲,搜索引擎、个性化推荐引擎显然也是数据产品。狭义范畴的数据产品,比如大家熟知的淘宝数据魔方、百度指数、电商的CRM平台、各种公司内部的数据决策支持系统等都是数据产品。”搜索引擎、推荐引擎代表了当今数据挖掘领域最成功的商业案例,而魔方、指数、CRM等产品也是数据分析和决策的典型应用,因此老读悟的这个定义我还是相当认同的,或者更简单的说,凡是以数据价值驱动为核心的产品形式都是数据产品,说得更艺术一点, the art of turning data into product 。

彩票365下载 2

彩票365下载 3

Q1:一个电商平台,应该着重关注什么数据,怎样设计数据后台?

作为《增长模型下的产品与运营实战》体系的第一篇,我想先谈一下整个产品和运营大体系的最基础环节——数据体系。


产品经理的概念在不断泛化。近些年来,随着互联网行业的发展,越来越多的企业意识到了大数据和精细化运营的重要性,为了更好地挖掘数据的价值,指导业务的优化和发展,数据产品经理应运而生,他们基于数据分析方法发现问题,并提炼关键要素,设计产品来实现商业价值。

1 、总体运营指标

A1:电商数据的核心指标一般有:GMV,Transations(交易数量),ASP(均价),购物车大小,用户的复购率,购买频次,年度复购率。这样的指标很多。:我觉得有三类的指标需要关注,第一:交易数据,第二:用户行为数据,第三:用户来源数据。

就像人走路的时候需要看到前方的道路,产品和运营在做决策前也需要睁开“双眼”。左眼,是数据;右眼,是用研。(哎,别问我为什么不是左眼用研,右眼数据……)

方法论

虽为产品经理,但要真正解决核心问题,不免要在前期和中期进行大量的数据分析工作,那么,实用的数据分析方法有哪些呢?

从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。

这里面,我觉得您可以根据自己的资源状况来设优先级。最直接的就是交易数据,然后最重要的是行为数据,因为所有的电商提供的是“互联网产品”而不仅仅是“所销售的产品”。第三就是流量的数据的分析,因为这里涉及到获取客户的成本。

通过线上数据反馈,我们可以准确地发现问题,找到规律,求证猜想,平息主观之争,为产品改进和运营优化的制定和实施提供明确的方向。


一、业务分析类1.1 杜邦分析法

彩票365下载 4

Q2 : 如何收集自己需要的数据,面对杂乱无序的数据该如何分析,如何保证数据的准确性

一、互联网公司数据职能设置

这里主要探讨一下,如何设计或者评价数据产品?也就是方法论的问题。说到数据产品,不能不提一下数据分析和数据挖掘。常碰到某牛人对着报表鄙视的说这叫数据分析,根本算不上数据挖掘,但是在我的理解里,数据分析其实也是数据挖掘,只是一种浅层次但是非常简洁有效的数据挖掘形式而已,因此后文不再使用数据分析这个词,而是围绕数据挖掘来思考数据产品的本质。

杜邦分析法目前主要用于财务领域,通过财务比率的关系来分析财务状况,其核心要点是将一个大的问题拆分为更小粒度的指标,以此了解问题出在了哪儿,从而对症下药。

2 、 网站流量指标

A1:不同行业,不同业务会有相同宏观的指标,也有细化到本行业,本业务的指标。需要从宏观到微观的拆解指标。大量的数据如何为我们所用?需要了解产品业务,明确问题的本质,大量的深入的产品实践。大胆的提出假设,然后通过数据理性的验证。我们还会有更多的线下线上活动帮助大家拆解数据分析指标。

互联网公司普遍十分重视数据,数据部门职能设置却各不相同。大多会设置独立的BI部门,有些也会把数据人员分散在各个团队。

《Data Mining Techniques》这本书里对数据挖掘的定义是:数据挖掘是一项探测大量数据以发现有意义的模式和规则的业务流程。“发现有意义的模式和规则”也就是我理解的价值驱动与业务目标,进一步的这些任务又可归纳为分类和预测、评估、关联规则、聚类、孤立点等,而为了解决上述任务所需要的方式方法则包括各种统计学模型、决策树、聚类算法、人工智能等等数学和计算机技术。

以电商行业为例,GMV(网站成交金额)是考核业绩最直观的指标,当GMV同比或环比出现下滑时候,需要找到影响GMV的因素并逐一拆解。

即对访问你网站的访客进行分析,基于这些数据可以对网页进行改进,以及对访客的行为进行分析。

关于数据准确性可以不同的工具去验证。比如同时安装多个数据统计工具。比如比较客户端和服务端的数据统计差异。

数据职能常见的有三个主要角色:

数据挖掘的方法论有很多种定义,有DMAIC模型,CRISP-DM模型,SEMMA模型等等,虽然细节不一,但是大体流程并无差异。我个人比较喜欢简洁的DMAIC模型,一个是因为Kaushik的经典《Web Analytics2.0》里遵循的思想便是这个,更重要的是它引入了循环控制的理念,而不是简单的线性流程。DMAIC模型包括:

彩票365下载 5

彩票365下载 6

Q3: 做内容的网站,如何结合业务判断需要获取哪些和用户相关的数据?

a. 数据工程师,负责搭建底层数据架构,定义数据埋点规范、编写埋点代码(有时也会由开发人员植入埋点代码)、以及建立和管理数据库报表。

Define定义需求,即把业务问题转化为数据挖掘问题

GMV下降如果是因下单用户减少所造成的,那么是访客数(流量)减少了,还是转化率下降了呢?如果是访客数减少了,那是因为自然流量减少了,还是因为营销流量不足?

3 、销售转化指标

A3:最基本的指标是:页面浏览量、访问量、独立访客数、跳出率、页面停留时长、网站停留时长、退出率、转化率,页面退出率……

b. BI,负责根据业务需求在数据库中抓取对应数据项,编写SQL代码,生成各类报表。(注:传统的数据库管理员的职能更类似于数据工程师

Measure 测量数据,即理解、收集并加工数据,做好准备

如果是自然流量下降的话,可能需要在用户运营和产品运营端发力,如果是营销流量不足,那么可以通过营销活动或者站外引流的形式增加曝光量。

分析从下单到支付整个过程的数据,帮助提升商品转化率。也可以对一些频繁异常的数据展开分析。

内容热度:分享次数、推荐次数、点赞次数、评论数

  • BI – 埋点)

Analyze 分析建模 ,即构建模型、评估模型的过程

同样,如果是转化率的问题,那么需要对用户进行细分,针对不同阶段的用户采取不同的运营策略,关于用户的部分,这里不做赘述,有兴趣的朋友可以关注后面的文章。

彩票365下载 7

用户:新用户、活跃用户、沉寂用户占比的变化,增长的趋势等等

c. BA,负责对BI生成的报表进行分析,结合业务知识对数据进行透彻解读,输出有明确指导意义的观察和建议。BA人员通常需要有较强的业务背景知识,能够准确地理解数据背后的业务状况和波动原因,并用业务“语言”输出分析结论。

Improve 解决问题,即部署模型来解决目标问题

最后,如果是因为客单价不高,那么需要进行定价及促销的方案优化,比如识别具有GMV提升潜力的商品进行定价优化,评估当前促销的ROI,针对选品、力度和促销形式进行优化。同时通过关联商品的推荐或商品套装促销的形式,激发用户购买多件商品,也可以有效提高客单价。

4 、 客户价值指标

Q4: 不强制登陆的app,如何定义独立用户。目前我们是获取手机信息,但并不准确

我在实践中的体会是:两种组织架构方式各有明显的利弊,优缺点截然相反。

Control反馈控制,即评估结果重新开始循环,不断改进

1.2 同比热力图分析法

在面向客户制定运营策略、营销策略时,我们希望能够针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。精准化运营的前提是客户关系管理,而客户关系管理的核心是客户分类。

A4:不强制登录,可以在app和设备的基础信息在不侵犯用户隐私的情况下,计算一个比较固定的ID。这个ID应该基本上能够判断一个稳定的用户。但是它并不和手机号码或者设备号做深度绑定。在网站上类似cookie的方法。

当数据人员集中在一个部门时,数据库管理和报表定制均十分专业高效。但因为离业务部门较远,业务理解受到影响,在数据定义和解读上相对偏薄弱。

DMAIC模型

同比热力图分析法这个名称是我自己造的,其实无非是把各个业务线的同比数据放到一起进行比较,这样能更为直观地了解各个业务的状况。

通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。

Q5: 若想了解某个行业,有哪些平台可以拿到相对靠谱数据以供分析?

数据职能分散在各个业务线时,正好相反。并有较严重的数据重复拉取,人力浪费不说,还因口径定义上的差异,导致同一数据在不同部门各不相同。例如转化率=订单数/访客数,有的部门在访客数中去除“疑似机器人”部分,有的部门则统一访客数为“二跳访客”,带来转化率数据的明显差异。

基于数据挖掘的方法论,回头来理清产品设计的方法论。通常对于互联网产品设计,比较一致的观点是《用户体验要素》里面的五层模型,战略层→范围层→结构层→框架层→表现层。我相信对于产品经理来说五层模型属于入门,但是对于不同类型的产品必然有不同的解读,比如SNS产品和电商产品的五层模型关注的问题肯定有差异,因此这里还是以淘宝魔方为例赘述一遍自己对于数据产品的五层模型理解。

彩票365下载 8

在客户分类中,RFM模型是一个经典的分类模型,模型利用通用交易环节中最核心的三个维度——最近消费、消费频率(Frequency)、消费金额细分客户群体,从而分析不同群体的客户价值。

A5:这个部分需要的工具有很多,看您的业务是以App为主,还是Web为主。基本上应该从流量,市场占有率,还有用户交互使用深度、舆情等角度入手。每一个都有不同的工具能够辅助。比如说Alexa,AppAnnie,艾瑞的互联网行业研究报告,Gartner的研究报告,IDC,TalkingData的游戏行业研究等等都是一些好的起点。

一个比较好的做法是把数据工程师和BI集中在数据部门,在各个业务线分别设置BA人员,两边对接。

战略层,用户需求和产品目标,比如淘宝魔方的目标用户是品牌卖家,那么它到底帮助品牌卖家用户解决什么问题?对于DMAIC来说,相当于解决Define的问题,即数据要实现什么价值。

构建一张同比热力图大致需要三步:

在某些商业形态中,客户与企业产生连接的核心指标会因产品特性而改变。如互联网产品中,以上三项指标可以相应地变为下图中的三项:最近一次登录、登录频率、在线时长。

▶数据分析如何驱动产品优化?

二、数据使用方式

范围层,功能规格和内容需要,比如淘宝魔方有哪些功能,这些功能有哪些指标,每个指标反应哪些问题?对于DMAIC来说,相当于解决Measure和Analyze的问题,即价值表现为哪些数据指标,这些指标的来龙去脉如何。

  1. 彩票365下载,按照杜邦分析法将核心问题进行拆解,这里仍以电商为例,我们将GMV拆成了流量、转化率、商品均价和人均购买量,即GMV=流量*转化率*商品均价*人均购买量;
  2. 计算每个业务各项指标的同比数据;
  3. 针对每一项指标,对比各业务的同比高低并设定颜色渐变的条件格式,以上图中的转化率同比为例,业务5转化率同比最高,为深橙底色,业务3转化率同比最低且为负值,因此设定为蓝色底色加红色字体。

彩票365下载 9

Q1:2B企业应应用如何做基于数据驱动的产品设计与改进?

互联网需要进行数据观察的领域十分广泛,每个细分领域都有不同的核心KPI,应当根据核心目标拆分背后的影响因素,有针对性地提出数据需求,制定数据报表。

结构层,交互设计和产品架构,比如淘宝魔方的各种指标怎么分类组织,不同维度的相互关系如何?

通过同比热力图的分析,首先,可以通过纵向对比了解业务自身的同比趋势,其次,可以通过横向对比了解自身在同类业务中的位置,此外,还可以综合分析GMV等核心指标变动的原因。

彩票365下载 10

A1:SaaS企业的数据驱动产品设计非常重要。首先,最基础的开始是Product Usage Metrics。因为SaaS产品都要解决一个企业应用的场景。 而这个场景在业务上的被重现频次,决定了SaaS软件的基本交互频次。所以登录批次,使用深度(事件数/访问)等最基本的指标是最粗放的指标。

通常数据的使用方式分为如下情况:

框架层,界面设计和导航设计,比如流失顾客指标是使用图还是用表格?使用什么类型的图?数据筛选器和图表怎么布局?

除了电商业务的分析以外,同比热力图同样适用于互联网产品数据指标的监控及分析,该分析方法的关键点在于拆解核心指标,在本文后面的产品运营类方法中将会介绍相关指标的拆解方法。

5 、商品类指标

最重要的,是产品每一个功能的使用者数量,使用的频次,转化漏斗,转化率。

  1. 常规数据报表

表现层,视觉设计,比如子行业趋势图使用什么颜色分类?宝贝列表是否显示图片?上述三层,对于DMAIC来说,相当于解决Improve的问题,即数据以什么样的形式来展现其价值。

1.3 类BCG矩阵

主要分析商品的种类,哪些商品卖得好,库存情况,以及可以建立关联模型,分析哪些商品同时销售的几率比较高,而进行捆绑销售。

请记住,这些分析必须要在“用户”级别能够做分析,而不是一个单纯流量级别的分析,才有未来的核心意义。然后将usage在客户公司级别进行汇总,比较在公司级别的使用度,使用深度和未来的续约付费率一般呈正相关。

常规数据报表主要用于需要长期持续观察的核心数据。例如:流量漏斗监控,可分为首页跳失率、商详页到达率(分为浏览-商详、搜索-商详两大分支)、加车率、结算率、结算完成率等核心环节漏斗数据。用户渠道来源情况,如各渠道来源的用户数、新客数、订单占比、转化情况等等。品类转化率波动,如各品类的流量、订单、SKU销售数量等。流量分发效率,如各频道/栏目的CTR、商详页到达、转化、复访率等。

具体的产品设计过程中不断运用上述模型进行思考迭代,最终才成型完整的产品,对于DMAIC来说,这就是Control的内涵。

BCG矩阵大家都非常熟悉了,以市场占有率和增长率为轴,将坐标系划分为四个象限,用于判断各项业务所处的位置。

彩票365下载 11

还有就是整个SaaS页面的优化,比如说注册流,注册转化率,注册用户向深度用户的转化率,深度用户向付费用户的转化率。SaaS的数据分析是很深入的话题,我就是分享一些最基本的指标。

当常规监控的核心数据项发生超阈值波动或趋势性波动时,通常会触发专题分析,并根据分析结果采取相应对策,以推动数据回到常规范围。

可以看到,数据挖掘和产品设计在方法论上是具有内在统一的,这就是我所理解的数据产品设计的方法论。

这里想讲的并非传统的BCG矩阵,而是BCG矩阵的变阵,或者叫类BCG矩阵。

6 、 市场营销活动指标

Q2:关于留存率,互联网金融借贷产品是典型的低频,一个人不可能经常上来借钱或者出借,看留存率还有意义么?

常规数据报表建议通过公司的BI系统定制在线报表,按监控频度进行观察分析。

数据产品设计模型

根据不同的业务场景和业务需求,我们可以将任意两个指标作为坐标轴,从而把各类业务或者用户划分为不同的类型。

主要监控某次活动给电商网站带来的效果,以及监控广告的投放指标。

A2:留存率有意义,因为留存是一个普遍的概念。唯一的一个就是您专注“频次”的不同。比如说买汽车,美国的整个汽车购买行为,不可能用天来衡量,而要用年。因此美国的汽车制造商,就持续的按照“月份”给每一个不同的区隔发送不同的营销方案。互联网金融也有他的产品生命周期,这要求您来制定营销策略,找到那个“频次”,以此为开始进行营销产品规划。

  1. 专题分析

具体来说,任何一款数据产品需要先思考这个产品的目标用户是谁,帮它解决什么问题,给它带来什么价值,也就是确定产品的业务目标。继续思考,为了实现业务目标,需要哪些数据指标?这些数据指标是怎么来的?这些指标如何反应解决问题的思路?当我们确定了数据指标后,从技术的角度讲就是数学建模的问题了,从产品的角度讲需要明确第三个环节,就是这些指标以怎么样的形式展示?如何更好的发挥它的价值?这就从抽象概念进化到具体的产品形式。数据产品的设计过程也就是基于上述三点进行不断的循环迭代的过程。

比如可以以品牌GMV增长率和占有率构建坐标系,来分析各品牌的状况,从而帮助业务方了解到哪些品牌是未来的明星品牌,可以重点发力,哪些品牌处于弱势且增长匮乏,需要优化品牌内的产品布局。

彩票365下载 12

Q3: 支付转化率比较低,这种情况通过什么点,什么角度去分析用户行为?

专题数据分析通常按专题的主要影响因素确定数据项,拆分观察维度,抓取多维度数据,对某个专题目标进行分析,找到影响因素所在的数据维度,得出结论,指导后续动作。例如:针对某个重大事件的状况或效果分析,如双11大促后的数据总结盘点。核心数据出现重大波动,如Web平台转化率持续提升的原因分析。出现趋势性状况,如某付费渠道来源的用户数量持续下降。某个专题研究,如95后导购特征和消费特征分析。

  1. 业务目标

彩票365下载 13

7 、 风控类指标

A3:先要全面的找到支付转化的全部关键转化路径,然后看每个转化路径上面关键点之间的转化率。比如到商品详情页面,可以从搜索页面、分类页面、频道页面、品牌页面、活动页面、首页、关联销售推荐、甚至直接访问到达商品详情页面。每个转化路径和转化量的占比都要考虑。然后再找出量大且转化率低的路径先优化,量小转化率高的路径可以加强并且scale。

  1. AB测试

就数据产品来说,其主要价值应该是决策或者辅助决策,这就意味着数据产品往往和业务及运营密不可分。因此评价数据产品设计的原点是产品能否满足业务运营的关键需求,不论是理解、预测还是决策。不同业务的关键需求显然是不一样的,数据产品的目标用户和目标价值也必然存在差异,这就要求数据产品的设计去深入理解业务本身,游戏产品经理最好是一个资深玩家,同样,完美的数据产品经理即使不是一个业务专家,至少也是需要能够站在业务专家角度思考问题。

本文由彩票365下载发布于彩票365官网app互联网,转载请注明出处:彩票365下载增长模型下的产品与运营实战,基于

关键词: 彩票365下载